There is growing evidence that insects in high-density populations invest relatively more in pathogen resistance than those in low-density populations (i.e. density-dependent prophylaxis). Such increases in resistance are often accompanied by cuticular melanism, which is characteristic of the high-density form of many phase polyphenic insects. Both melanism and pathogen resistance involve the prophenoloxidase enzyme system. In this paper the link between resistance, melanism and phenoloxidase activity is examined in Spodoptera larvae. In S. exempta, cuticular melanism was positively correlated with phenoloxidase activity in the cuticle, haemolymph and midgut. Melanic S. exempta larvae\ud
were found to melanize a greater proportion of eggs of the ectoparasitoid Euplectrus laphygmae than non-melanic larvae, and melanic S. littoralis were more resistant to the entomopathogenic fungus Beauveria bassiana (in S. exempta the association between melanism and fungal resistance was non-sign®cant). These results strengthen the link between melanism and disease resistance and implicate the involvement of phenoloxidase
An important mechanism for insect pest control should be the use of fungal entomopathogens. Even though these organisms have been studied for more than 100 years, their effective use in the field remains elusive. Recently, however, it has been discovered that many of these entomopathogenic fungi play additional roles in nature.They are endophytes, antagonists of plant pathogens, associates with the rhizosphere, and possibly even plant growth promoting agents. These findings indicate that the ecological role of these fungi in the environment is not fully understood and limits our ability to employ them successfully for pest management. In this paper, we review the recently discovered roles played by many entomopathogenic fungi and propose new research strategies focused on alternate uses for these fungi. It seems likely that these agents can be used in multiple roles in protecting plants from pests and diseases and at the same time promoting plant growth.
Invertebrate pathogens and their hosts are taxonomically diverse. Despite this, there is one unifying concept relevant to all such parasitic associations: Both pathogen and host adapt to maximize their own reproductive output and ultimate fitness. The strategies adopted by pathogens and hosts to achieve this goal are almost as diverse as the organisms themselves, but studies examining such relationships have traditionally concentrated only on aspects of host physiology. Here we review examples of host-altered behavior and consider these within a broad ecological and evolutionary context. Research on pathogen-induced and host-mediated behavioral changes demonstrates the range of altered behaviors exhibited by invertebrates including behaviorally induced fever, elevation seeking, reduced or increased activity, reduced response to semiochemicals, and changes in reproductive behavior. These interactions are sometimes quite bizarre, intricate, and of great scientific interest.
This chapter describes ecological case histories for a number of species belonging to order Entomophthorales (Massospora spp., Neozygites spp., Strongwellsea castrans, Entomophthora muscae, Entomophaga grylli, Entomophthora thripidum and Conidiobolus spp.) and discusses the life cycle, taxonomy, spatial and temporal distribution, persistence, dispersal and impact of these species on host biology and behaviour which are keys to the effective exploitation in specific environments. The use of these species in pest management is discussed with particular emphasis on future opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.