Cardiovascular and coronary heart diseases involve molecular and tissue level damage of blood vessels and heart. Coronary Heart Disease and heart failure are the leading cause of mortality worldwide. Stem cell transplantation is emerging as a new treatment option. Stem cells are capable to reach and settle down at damaged cardiac tissue. This stem cell option also repairs the myocardial infarction area in heart or vascular territories and ultimately reduces the infarct-related mortality. Non-invasive cardiovascular imaging monitors the real-time status of cardiovascular remodeling or differentiated stem cell autografting. Cardiac magnetic resonance imaging (MRI) and bioluminescence are robust non-invasive monitoring techniques to visualize cardiovascular structure changes due to myocardial dysfunction or restorative myocardial recovery. The present chapter highlights the sources, types, delivery methods of stem cells in cardiovascular treatment, advantages and current limitations of stem cell monitoring, scopes of ultra-high field cardiac 900 MHz MRI and bioluminescence methods applied in stem cell transplantation, to translate stem cell molecular events into clinical success and evaluation of rejuvenation rate with future perspectives. In conclusion, right choice of stem cells, pluripotent stem cell delivery, transplantation and real-time monitoring of stem cell trafficking enhances the stem cell therapeutic efficacy in cardiac engraftment and differentiation.