New global directions align agricultural land resources towards food production; therefore, marginal lands could provide opportunities for second-generation energy crops, assuming that in the difficult conditions of plant development, productivity can be maintained at relatively high levels. Sustainable bioenergy production on marginal lands represents an ambitious objective, offering high-quality biofuels without competing with the agri-food industry, since it allows successful feedstock production to be performed on unmanaged areas. However, marginal land feedstock production generally shows several agronomic, techno-economic, and methodological challenges, leading to decreases in the obtained quantities of biomass and profitability. Sweet Sorghum is a technical plant that has the needed qualities to produce large amounts of biofuels on marginal lands. It is a high biomass- and sugar-yielding crop, characterized by a high photosynthetic efficiency and low fertilizer requirement, is resistant to drought, and adapts well to different climate areas. Marginal lands and contaminated soils provide a favorable development environment for plants such as sweet sorghum; however, in-depth research studies on biomass productivity must be carried out, as well as advanced quality evaluation of the products, in order to develop combined technologies that use resources efficiently. The present study starts with a comparative evaluation of two sweet sorghum crops established on both marginal and regular lands, assessing plant development characteristics and juice production, and an evaluation of bioethanol generation potential. The vegetal wastes resulting from the processing were treated by pyrolysis, with the aim of maximizing the productivity of high-quality liquid biofuels and chemicals. The charcoal obtained in the thermal processes was considered as an amendment of the soil so that marginal land quality could be improved over time.