Cycles in biological populations have been shown to arise from enemy-victim systems, delayed density dependence, and maternal effects. In an initial effort to model the year-to-year dynamics of natural populations of entomopathogenic nematodes and their insect hosts, we find that a simple, nonlinear, mechanistic model produces large amplitude, period two population cycles. The cycles are generated by seasonal dynamics within semi-isolated populations independently of inter-annual feedback in host population numbers, which differs from previously studied mechanisms. The microparasites compete for a fixed number of host insect larvae. Many nematodes at the beginning of the year quickly eliminate the pool of small hosts, and few nematodes are produced for the subsequent year. Conversely, initially small nematode populations do not over-exploit the host population, so the surviving hosts grow to be large and produce many nematodes that survive to the following year.