2019
DOI: 10.1016/j.algal.2018.11.009
|View full text |Cite
|
Sign up to set email alerts
|

Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production

Abstract: Production of microalgae is one of the emerging biotechnological processes due to its potential applications to produce high value-added compounds. In photobioreactors for microalgae production, the biomass concentration is a desirable variable to be measured on-line to optimize the yield of the systems. However, biomass concentration can hardly be monitored in real time. There are few expensive commercial sensors that in fact provide uncertain measurements. State estimators, also known as software sensors, ar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
5

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 19 publications
(12 citation statements)
references
References 26 publications
0
7
0
5
Order By: Relevance
“…The constant gain can also be continuously adapted by some available technique [84], and interval observers can limit the state trajectory based on the known intervals of uncertain model parameters [73]. The second category are variants of the Kalman filter which alters the correction gain in each iteration recursively using the comparison between noisy state estimations and noisy measurements, using covariance matrices of the system and measurement noises whose selection is critical for the proper functioning of the filter [85].…”
Section: Computer-aided Monitoring and Software Sensorsmentioning
confidence: 99%
See 1 more Smart Citation
“…The constant gain can also be continuously adapted by some available technique [84], and interval observers can limit the state trajectory based on the known intervals of uncertain model parameters [73]. The second category are variants of the Kalman filter which alters the correction gain in each iteration recursively using the comparison between noisy state estimations and noisy measurements, using covariance matrices of the system and measurement noises whose selection is critical for the proper functioning of the filter [85].…”
Section: Computer-aided Monitoring and Software Sensorsmentioning
confidence: 99%
“…A state estimator with the EKF was developed to estimate biomass concentration in an outdoor raceway cultivating Scenedesmus [85], based on a dynamic model of the process [89]. As inputs for the EKF, on-line measured values of dissolved oxygen, pH, injected flows of air and CO 2 and solar radiation were used.…”
Section: Kalman Filtersmentioning
confidence: 99%
“…Aunque en la literatura existen algunos resultados aplicados a escala de laboratorio (Dochain, 2000;Li et al, 2003;Tebbani et al, 2013), no existen muchos trabajos aplicados a fotobioreactores a escala industrial. En (García-Mañas et al, 2019), se desarrolló un estimador de estado basado en el filtro de Kalman extendido para estimar la concentración de biomasa en fotobioreactores abiertos. Dicho estimador se basa en el modelo basado en primeros principios desarrollado para estos reactores en (Fernández et al, 2016a) y sigue la estructura que se observa en la Figura 7.…”
Section: Otros Modelosunclassified
“…Como se puede apreciar, el estimador sigue correctamente la evolución de las medidas reales obtenidas mediante análisis de muestras en laboratorio marcadas en color rojo. Más información se puede encontrar en (García-Mañas et al, 2019). dependiendo de la cepa utilizada, siendo necesario conseguir aproximarse a los mismos para alcanzar una velocidad de crecimientoóptima (Costache et al, 2013).…”
Section: Otros Modelosunclassified
See 1 more Smart Citation