With different prevalence in different regions, radio frequency (RF) electromagnetic fields (EMF) are widely used for therapeutic tissue heating. Although short-wave diathermy (27.12 MHz) is the most popular treatment modality, quantitative data on patient's exposure have been lacking. By numerical simulation with the numerical anatomical model NORMAN, intracorporal distributions of specific absorption rates (SAR) were investigated for different treatment scenarios and applicators. Quantitative data are provided for exposures of target treatment areas as well as for vulnerable regions such as the eye lenses, central nervous system, and testes. Different applicators and distances were investigated. Capacitive and inductive applicators exhibit quite a different heating efficiency. It could be shown that for the same output power therapeutic heat deposition can vary by almost one order of magnitude. By mimicking therapist's practice to use patient's heat perception as an indicator for output power setting, numerical data were elaborated demonstrating that muscle tissue exposures may be several times higher for inductive than for capacitive applicators. Presented quantitative data serve as a guide for power adjustment preventing relevant overexposures without compromising therapy; they also provide a basis for estimating target tissue heat load and developing therapeutic guidelines.