The Bacteria Biotope (BB) task is biomedical relation extraction (RE) that aims to study the interaction between bacteria and their locations. This task is considered to pertain to fundamental knowledge in applied microbiology. Some previous investigations have used feature-based models; others have presented deep-learning-based models such as convolutional and recurrent neural networks used with the shortest dependency paths (SDPs). Although SDPs contain valuable and concise information, sections of significant information necessary to define bacterial location relationships are often neglected. In addition, the traditional word embedding used in previous studies may suffer from word ambiguation across linguistic contexts.Here, we present a deep learning model for biomedical RE. The model incorporates feature combinations of SDPs and full sentences with various attention mechanisms. We also used pre-trained contextual representations based on domain-specific vocabularies. In order to assess the model's robustness, we introduced a mean F1 score on many models using different random seeds. The experiments were conducted on the standard BB corpus in BioNLP-ST'16. Our experimental results revealed that the model performed better (in terms of both maximum and average F1 scores; 60.77% and 57.63%, respectively) compared with other existing models. We demonstrated that our proposed contributions to this task can be used to extract rich lexical, syntactic, and semantic features that effectively boost the model's performance. Moreover, we analyzed the trade-off between precision and recall in order to choose the proper cut-off to use in real-world applications.K eywords Biomedical text mining · Relation extraction · Deep learning · Attention networks · Contextual word embeddings · Domain-specific language
IntroductionDue to the rapid development of computational and biological technology, the biomedical literature is expanding at an exponential rate [1]. This situation leads to difficulty manually extracting required information. In BioNLP-ST 2016, the Bacteria Biotope (BB) task [2] followed the general outline and goals of previous tasks defined in 2011 [3] and 2013 [4]. This task aims to investigate the interactions of bacteria and its biotope; habitats or geographical entity, from genetic, phylogenetic, and ecology perspectives. It involves the Lives_in relation, which is a mandatory relation between related arguments, the bacteria and the location * peerapon.v@chula.ac.th Our highest precision (0.975 cut-off) Recall: 46.90 Precision: 72.60 F1 score: 56.99 Our default (0.5 cut-off) Recall: 65.28 Precision: 56.85 F1 score: 60.77 Our highest recall (0.025 cut-off) Recall: 70.54 Precision: 50.11 F1 score: 58.59 BGRU-Attn Recall: 69.82 Precision: 48.76 F1 score: 57.42 TurkuNLP Recall: 44.80 Precision: 62.30 F1 score: 52.10