In vivo molecular imaging is a research field in which molecular biology and advanced imaging techniques are combined for imaging molecular-level biochemical and physiological changes that occur in a living body. For biomolecular imaging, the knowledge of molecular biology, cell biology, biochemistry, and physiology must be applied. Imaging techniques such as fluorescence, luminescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), and magnetic resonance imaging (MRI) are used for biomolecular imaging. These imaging techniques are used in various fields, i.e., diagnosis of various diseases, development of new drugs, development of treatments, and evaluation of effects. Moreover, as biomolecular imaging can repeatedly acquire images without damaging biological tissues or sacrificing the integrity of objects, changes over time can be evaluated.Phenotypes or diseases in a living body are caused by the accumulation of various biological phenomena. Genetic differences cause biochemical and physiological differences, which accumulate and cause anatomical or structural changes. Biomolecular imaging techniques are suitable for each step. In evaluating anatomical or structural changes, MRI, CT, and ultrasound have advantages in obtaining high-resolution images. SPECT and MRI are advantageous for the evaluation of various physiological phenomena. PET and magnetic resonance spectroscopy can be used to image biochemical phenomena in vivo. Although various biomolecular imaging techniques can be used to evaluate various biological phenomena, it is important to use imaging techniques suitable for each purpose.