Li metal is considered as an ideal anode for Li-based batteries. Unfortunately, the growth of Li dendrites during cycling leads to an unstable interface, a low coulombic efficiency, and a limited cycling life. Here, a novel approach is proposed to protect the Li-metal anode by using a uniform agarose film. This natural biopolymer film exhibits a high ionic conductivity, high elasticity, and chemical stability. These properties enable a fast Li-ion transfer and feasiblity to accomodate the volume change of Li metal, resulting in a dendrite-free anode and a stable interface. Morphology characterization shows that Li ions migrate through the agarose film and then deposit underneath it. A full cell with the cathode of LiFPO and an anode contaning the agarose film exhibits a capacity retention of 87.1% after 500 cycles, much better than that with Li foil anode (70.9%) and Li-deposited Cu anode (5%). This study provides a promising strategy to eliminate dendrites and enhance the cycling ability of lithium-metal batteries through coating a robust artificial film of natural biopolymer on lithium-metal anode.