As multidrug-resistant
bacteria are an emerging problem and threat
to humanity, novel strategies for treatment and diagnostics are actively
sought. We aim to utilize siderophores, iron-specific strong chelating
agents produced by microbes, as gallium ion carriers for diagnosis,
applying that Fe(III) can be successfully replaced by Ga(III) without
losing biological properties of the investigated complex, which allows
molecular imaging by positron emission tomography (PET). Here, we
report synthesis, full solution chemistry, thermodynamic characterization,
and the preliminary biological evaluation of biomimetic derivatives
(FOX) of desferrioxamine E (FOXE) siderophore, radiolabeled with
68
Ga for possible applications in PET imaging of
S.
aureus
. From a series of six biomimetic analogs, which differ
from FOXE with cycle length and position of hydroxamic and amide groups,
the highest Fe(III) and Ga(III) stability was determined for the most
FOXE alike compounds–FOX 2-4 and FOX 2-5; we have also established
the stability constant of the Ga-FOXE complex. For this purpose, spectroscopic
and potentiometric titrations, together with the Fe(III)–Ga(III)
competition method, were used. [
68
Ga]Ga-FOXE derivatives
uptake and microbial growth promotion studies conducted on
S. aureus
were efficient for compounds with a larger cavity,
i.e., FOX 2-5, 2-6, and 3-5. Even though showing low uptake values,
Fe-FOX 2-4 seems to be also a good Fe-source to support the growth
of
S. aureus
. Overall, proposed derivatives may hold
potential as inert and stable carrier agents for radioactive Ga(III)
ions for diagnostic medical applications or interesting starting compounds
for further modifications.