3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Secondly, the capacity of BNC to match these requirements is assessed. Finally, a biofabrication process to produce patient-specific BNC auricular implants is demonstrated.BNC samples (n = 78) with varying cellulose content (2.5 -15%) were compared using stressrelaxation indentation with human ear cartilage (n = 17, from 4 males, aged 49 -93 years old).Additionally, an auricle from a volunteer was scanned using a 3T MRI with a spoiled gradientecho sequence. A negative ear mold was produced from the MRI data in order to investigate if an ear-shaped BNC prototype could be produced from this mold.The results show that the instantaneous modulus E in , equilibrium modulus E eq , and maximum stress σ max of the BNC samples are correlated to effective cellulose content. Despite significantly different relaxation kinetics, the E in , E eq and σ max of BNC at 14% effective cellulose content reached values equivalent to ear cartilage (for E eq , BNC: 2.4 ± 0.4 MPa and ear cartilage: 3.3 ± 1.3 MPa). Additionally, this work shows that BNC can be fabricated into patient-specific auricular shapes. In conclusion, BNC has the capability to reach mechanical properties of relevance for ear cartilage replacement, and can be produced in patient-specific ear shapes.