Polymer/graphene based nanomaterials have attracted significant scientific interest in the recent years due to marked enhancement in the polymer properties at low filler fractions. The property enhancements are attributed commonly to high aspect ratio of graphene platelets, filler-polymer interactions at the interface, as well as uniform dispersion of the platelets in the polymer matrices. Graphene also provides opportunities to tune its surface in order to achieve compatibility with the polymer matrices. Occasionally, chemical binding of the polymer matrix to the graphene surface has also been achieved.