Since their discovery, fermentation processes have gone along not only with the industrial beverages production and breweries, but since the times of Alexander Fleming, they have become a crucial part of the health care due to antibiotics production. However, complicated dynamics and strong nonlinearities cause that the production with the use of linear control methods achieves only suboptimal yields. From the variety of nonlinear approaches, gradient method has proved the ability to handle these issues--nevertheless, its potential in the field of fermentation processes has not been revealed completely. This paper describes constant vaporization control strategy based on a double-input optimization approach with a successful reduction to a single-input optimization task. To accomplish this, model structure used in the previous work is modified so that it corresponds with the new optimization strategy. Furthermore, choice of search step is explored and various alternatives are evaluated and compared.