This paper introduces a unified chaotic system that contains the Lorenz and the Chen systems as two dual systems at the two extremes of its parameter spectrum. The new system represents the continued transition from the Lorenz to the Chen system and is chaotic over the entire spectrum of the key system parameter. Dynamical behaviors of the unified system are investigated in somewhat detail.
This paper shows that a large class of systems, introduced in [Čelikovský & Vaněček, 1994; Vaněček & Čelikovský, 1996] as the so-called generalized Lorenz system, are state-equivalent to a special canonical form that covers a broader class of chaotic systems. This canonical form, called generalized Lorenz canonical form hereafter, generalizes the one introduced and analyzed in [Čelikovský & Vaněček, 1994; Vaněček & Čelikovský, 1996], and also covers the so-called Chen system, recently introduced in [Chen & Ueta, 1999; Ueta & Chen, 2000].Thus, this new generalized Lorenz canonical form contains as special cases the original Lorenz system, the generalized Lorenz system, and the Chen system, so that a comparison of the structures between two essential types of chaotic systems becomes possible. The most important property of the new canonical form is the parametrization that has precisely a single scalar parameter useful for chaos tuning, which has promising potential in future engineering chaos design. Some other closely related topics are also studied and discussed in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.