Ionic liquids have been recognised as interesting solvents applicable in the efficient lignocellulosic biomass valorisation, especially in the biomass fractionation into individual polymeric components or direct hydrolysis some of biomass fractions. Considering the chemical character of ionic liquids, two different approaches, paved the way for a fractionation of biomass. The first strategy integrated a pre-treatment, hydrolysis and conversion of biomass through the employment of hydrogen-bond acidic 1-ethyl-3-methyimidazolim hydrogen sulfate ionic liquid. The second one relied on the use of a three-step fractionation process with hydrogen-bond basic 1-ethyl-3-methylimidazolium acetate to produce high purity cellulose, hemicellulose and lignin fractions. The proposed approaches were scrutinised for wheat straw and eucalyptus residues. Those different biomasses allowed understanding that enzymatic hydrolysis yields are dependent on the crystallinity of pre-treated biomass. The use of acetate based ionic liquid allowed to change crystalline cellulose I to cellulose II and consequently enhanced glucan to glucose yield to 93.14.1 mol% and 82.91.2 mol% for wheat straw and eucalyptus, respectively. Whereas for hydrogen sulfate ionic liquid, the same enzymatic hydrolysis yields were 61.6 0.2 mol% for wheat straw and only 7.90.3 mol% for eucalyptus residues. These results demonstrate the importance of either ionic liquid character or biomass type on the efficient biomass processing.