Metabolic engineering consistently demands to produce the maximum carbon and energy flux to target chemicals. To balance metabolic flux, gene expression levels of artificially synthesized pathways usually fine-tuned using multimodular optimization strategy. However, forward construction is an engineering conundrum because a vast number of possible pathway combinations need to be constructed and analyzed.Here, an iterative high-throughput balancing (IHTB) strategy was established to thoroughly fine-tune the (2S)-naringenin biosynthetic pathway. A series of gradient constitutive promoters from Escherichia coli were randomly cloned upstream of pathway genes, and the resulting library was screened using an ultraviolet spectrophotometry-fluorescence spectrophotometry high-throughput method, which was established based on the interactions between AlCl 3 and (2S)-naringenin. The metabolic flux of the screened high-titer strains was analyzed and iterative rounds of screening were performed based on the analysis results. After several rounds, the metabolic flux of the (2S)-naringenin synthetic pathway was balanced, reaching a final titer of 191.9 mg/L with 29.2 mg/L p-coumaric acid accumulation. Chalcone synthase was speculated to be the rate-limiting enzyme because its expression level was closely related to the production of both (2S)-naringenin and p-coumaric acid. The established IHTB strategy can be used to efficiently balance multigene pathways, which will accelerate the development of efficient recombinant strains. K E Y W O R D S flavonoids, metabolic engineering, modular optimization, promoter Biotechnology and Bioengineering. 2019;116:1392-1404. wileyonlinelibrary.com/journal/bit 1392 |