In this paper, a new weighted first-order formulation is proposed for solving the anisotropic diffusion equations with deep neural networks. For many numerical schemes, the accurate approximation of anisotropic heat flux is crucial for the overall accuracy. In this work, the heat flux is firstly decomposed into two components along the two eigenvectors of the diffusion tensor, thus the anisotropic heat flux approximation is converted into the approximation of two isotropic components. Moreover, to handle the possible jump of the diffusion tensor across the interface, the weighted first-order formulation is obtained by multiplying this first-order formulation by a weighted function. By the decaying property of the weighted function, the weighted first-order formulation is always well-defined in the pointwise way. Finally, the weighted first-order formulation is solved with deep neural network approximation. Compared to the neural network approximation with the original second-order elliptic formulation, the proposed method can significantly improve the accuracy, especially for the discontinuous anisotropic diffusion problems.