According to its Lax pair formulation, the nonlinear Schrödinger (NLS) equation can be expressed as the compatibility condition of two linear ordinary differential equations with an analytic dependence on a complex parameter. The first of these equations-often referred to as the x-part of the Lax pair-can be rewritten as an eigenvalue problem for a Zakharov-Shabat operator. The spectral analysis of this operator is crucial for the solution of the initial value problem for the NLS equation via inverse scattering techniques. For space-periodic solutions, this leads to the existence of a Birkhoff normal form, which beautifully exhibits the structure of NLS as an infinite-dimensional completely integrable system. In this paper, we take the crucial steps towards developing an analogous picture for time-periodic solutions by performing a spectral analysis of the t-part of the Lax pair with a periodic potential.