Reductive elimination from partially or completely oxidized metal centers is a vital step in a myriad of carbon–carbon and carbon–heteroatom bond–forming reactions. One strategy for promoting otherwise challenging reductive elimination reactions is to oxidize the metal center using a two-electron oxidant (i.e., from M(n) to M(n+2)). However, many of the commonly used oxidants for this type of transformation contain oxygen, nitrogen, or halogen moieties that are subsequently capable of participating in reductive elimination, leading to a mixture of products. This minireview examines an emerging solution to this widespread problem in organometallic chemistry, the use of bystanding F+ oxidants, and describes recent applications in Pd(II)/Pd(IV) and Au(I)/Au(III) catalysis. We then briefly discuss a rare example in which one-electron oxidants have been shown to promote selective reductive elimination in Pd(II)-catalyzed C–H functionalization, which we view as a promising future directing in the field.