Post-polymerization modification of poly(allylamine hydrochloride) was applied to synthesize a library of amide-linked polyelectrolytes with tethered aliphatic, aromatic, and cubyl moieties. The efficacy of amidation was determined to be between 12 and 98 %, depending on the electronics, sterics, and solubility of the amide linkage. 13 C solid-state NMR was used to further validate their structure. Thermogravimetric analysis and differential scanning calorimetry analysis indicated that none of the new polymers displayed a classic melt/freeze profile, but all displayed onset decomposition temperatures smaller than 2158C. We anticipate that the structure-property relationships observed in the resulting library of graft-modified polymers can facilitate better understanding of how to design polyelectrolytes for the construction of well-defined multilayer systems.