2015
DOI: 10.5120/20448-2799
|View full text |Cite
|
Sign up to set email alerts
|

Bisecting K-Means for Clustering Web Log data

Abstract: Web usage mining is the area of web mining which deals with extraction of useful knowledge from web log information produced by web servers. One of the most important tasks of Web Usage Mining (WUM) is web user clustering which forms groups of users exhibiting similar interests or similar browsing patterns. This paper presents results of clustering techniques for Web log data using K-means and Bisecting K-means algorithm. Clusters are formed with respect to similar IP address and packet combinations. The clust… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
4

Year Published

2018
2018
2022
2022

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 6 publications
0
4
0
4
Order By: Relevance
“…In this research, we propose to apply an improved variant of the K-means clustering method, the bisecting K-means algorithm, to explore and categorize the vehicle stopping behavior at a stop sign. The bisecting K-means algorithm is a partitional unsupervised learning algorithm designed to classify large data into subsets, such that the data within each subset share the largest common trait [43]. Its clustering objective is to minimize the distance between every data point and the center of the corresponding cluster.…”
Section: Identifying and Classifying Vehicle Stopping Behaviorsmentioning
confidence: 99%
“…In this research, we propose to apply an improved variant of the K-means clustering method, the bisecting K-means algorithm, to explore and categorize the vehicle stopping behavior at a stop sign. The bisecting K-means algorithm is a partitional unsupervised learning algorithm designed to classify large data into subsets, such that the data within each subset share the largest common trait [43]. Its clustering objective is to minimize the distance between every data point and the center of the corresponding cluster.…”
Section: Identifying and Classifying Vehicle Stopping Behaviorsmentioning
confidence: 99%
“…Proses data mining menggunakan algoritma ini bertujuan untuk mengelompokan data ke dalam setiap klaster (clustering) yang sesuai dengan titik pusat (centroid) dari masing masing klaster. Algoritme ini telah digunakan untuk mengetahui pola perilaku pengunjung halaman situs web dalam [18]. Algoritme bisecting kmeans juga diterapkan dalam menentukan segmentasi warna gambar untuk menghasilkan analisis gambar yang akurat [19].…”
Section: Pendahuluanunclassified
“…Algoritme bisecting kmeans juga diterapkan dalam menentukan segmentasi warna gambar untuk menghasilkan analisis gambar yang akurat [19]. Algoritme bisecting k-means telah teruji lebih baik daripada metode standar k-means karena memiliki waktu komputasi yang cepat [18]. Lebih lanjut, algoritme ini lebih baik dari metode pendekatan klaster hirarkis untuk tiga metode pengukuran kualitas klaster, yaitu entropy, f-measure dan overall similarity [20].…”
Section: Pendahuluanunclassified
See 2 more Smart Citations