2019
DOI: 10.14710/jtsiskom.8.2.2020.78-83
|View full text |Cite
|
Sign up to set email alerts
|

Customer segmentation using bisecting k-means algorithm based on recency, frequency, and monetary (RFM) model

Abstract: Information on customer loyalty characteristics in a company is needed to improve service to customers. A customer segmentation model based on transaction data can provide this information. This study used parameters from the recency, frequency, and monetary (RFM) model in determining customer segmentation and bisecting k-means algorithm to determine the number of clusters. The dataset used 588 sales transactions for PT Dinar Energi Utama in 2017. The clusters formed by the bisecting k-means and k-means algori… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
2
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(11 citation statements)
references
References 12 publications
0
2
0
3
Order By: Relevance
“…K-Means is an algorithm that groups objects with the same characteristics into a cluster, which is determined repeatedly by the value of k (Amalia et al, 2021). Data mining process using K-Means is aimed at grouping data into each cluster which corresponds to the center point (centroid) from each cluster used to identify patterns (Puspitasari et al, 2020).…”
Section: Methodsmentioning
confidence: 99%
“…K-Means is an algorithm that groups objects with the same characteristics into a cluster, which is determined repeatedly by the value of k (Amalia et al, 2021). Data mining process using K-Means is aimed at grouping data into each cluster which corresponds to the center point (centroid) from each cluster used to identify patterns (Puspitasari et al, 2020).…”
Section: Methodsmentioning
confidence: 99%
“…Sehingga pada penelitian berhasil membentuk suatu model segmentasi pelanggan terbaik dengan model RFM dan metode bisecting k-mens dengan tiga kelompok pelanggan yang dihasilkan yaitu Occasional, Typical, dan Gold. Dari penelitian ini juga dapat dilihat bahwa metode RFM merupakan metode yang baik dalam melakukan analisis perilaku pelanggan [28].…”
Section: A Penerapan Rfm Modelunclassified
“…Berdasarkan pada pengertian diatas, maka dapat disimulasikan perhitungan nilai RFM pada analisis data pelanggan berdasarkan pada penelitian [28] sebagai berikut. Jika diasumsikan penelitian dilakukan pada 14 Agustus 2021, maka perhitungan RFM Model dari data transaksi pada Tabel I dapat dilihat pada Tabel II.…”
Section: A Penerapan Rfm Modelunclassified
See 1 more Smart Citation
“…In an effort to understand customer needs based on customer data [3], companies segment customers using the unique characteristics of each customer [4]. This customer segmentation process is supported by data mining and RFM models [7].…”
Section: Introductionmentioning
confidence: 99%