2020
DOI: 10.1111/jfpe.13428
|View full text |Cite
|
Sign up to set email alerts
|

Black tea withering moisture detection method based on convolution neural network confidence

Abstract: Deep learning method was applied to rapidly and nondestructively predict the moisture content in withered leaves. In this study, a withering moisture detection method based on confidence of convolution neural network (CNN) was proposed. The method used data augmentation to preprocess the original image. The prediction results obtained by the CNN model were compared with the results of traditional partial least squares (PLS) and support vector machine regression (SVR) models. The results clarified that the quan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
11
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 26 publications
(13 citation statements)
references
References 22 publications
1
11
0
1
Order By: Relevance
“…When the RPD value exceeds 1.4, it indicates that the model can be applied. When the RPD is between 1.8 and 2, the model has a good prediction, while when RPD > 2, the model has an excellent prediction ability [ 13 , 38 , 39 ].…”
Section: Methodsmentioning
confidence: 99%
“…When the RPD value exceeds 1.4, it indicates that the model can be applied. When the RPD is between 1.8 and 2, the model has a good prediction, while when RPD > 2, the model has an excellent prediction ability [ 13 , 38 , 39 ].…”
Section: Methodsmentioning
confidence: 99%
“…Literature [10] provided a novel deep RNN model. Literature [11] proposed a bidirectional treelike recursive neural network model, with one direction being top-down and the other direction being bottom-up.…”
Section: Related Workmentioning
confidence: 99%
“…Один из таких аппаратов (рис. (2) Подставляя значения коэффициентов из таблицы 4 в уравнение 1, получается итоговая регрессионная модель: I = -24,3122 + 0,4754t -0,0037t 2 + 0,0066n --2,7623τ -0,1701τ 2 + 47,5444s + 0,2694s 2 Среди оптимизаторов наилучшим образом подошел Adam (adaptive moment estimation, т. е. адаптивная оценка момента), который является дальнейшей модификацией стохастического градиентного спуска и RMSProp. У него действуют следующие правила обновления весов:…”
Section: объекты и методы исследованияunclassified