Background
Exposure to aerosols from metalworking fluids (MWF) has previously been related to a series of adverse health outcomes (eg, cancer, respiratory diseases). Our present epidemiological study focuses on occupational exposures to MWF and a panel of exposure and effect biomarkers. We hypothesize that these health outcomes are caused by particle exposure that generates oxidative stress, leading to airway inflammation and ultimately to chronic respiratory diseases. We aimed to assess whether MWF exposure, in particular as characterized by its oxidative potential, is associated with biomarkers of oxidative stress and inflammation as well as genotoxic effects.
Objective
The ultimate goal is to develop exposure reduction strategies based on exposure determinants that best predict MWF-related health outcomes. The following relationships will be explored: (1) exposure determinants and measured exposure; (2) occupational exposure and preclinical and clinical effect markers; (3) exposure biomarkers and biomarkers of effect in both exhaled breath condensate and urine; and (4) biomarkers of effect, genotoxic effects and respiratory symptoms.
Methods
At least 90 workers from France and Switzerland (30 controls, 30 exposed to straight MWF and 30 to aqueous MWF) were followed over three consecutive days after a nonexposed period of at least two days. The exposure assessment is based on MWF, metal, aldehyde, and ultrafine particle number concentrations, as well as the intrinsic oxidative potential of aerosols. Furthermore, exposure biomarkers such as metals, metabolites of polycyclic aromatic hydrocarbons and nitrosamine are measured in exhaled breath condensate and urine. Oxidative stress biomarkers (malondialdehyde, 8-isoprostane, 8-hydroxy-2’-deoxyguanosine, nitrates, and nitrites) and exhaled nitric oxide, an airway inflammation marker, are repeatedly measured in exhaled breath condensate and urine. Genotoxic effects are assessed using the buccal micronucleus cytome assay. The statistical analyses will include modelling exposure as a function of exposure determinants, modelling the evolution of the biomarkers of exposure and effect as a function of the measured exposure, and modelling respiratory symptoms and genotoxic effects as a function of the assessed long-term exposure.
Results
Data collection, which occurred from January 2018 until June 2019, included 20 companies. At the date of writing, the study included 100 subjects and 29 nonoccupationally exposed controls.
Conclusions
This study is unique as it comprises human biological samples, questionnaires, and MWF exposure measurement. The biomarkers collected in our study are all noninvasive and are useful in monitoring MWF exposed workers. The aim is to develop preventative strategies based on exposure determinants related to health outcomes.
International Registered Report Identifier (IRRID)
DERR1-10.2196/13744