This paper examines the performance of conical sections (concentrator and diffuser) to improve the energy-recovery prospects of small-scale wind turbines. Detailed simulation studies of the conical sections with convergence angle viz., concentrator, and divergence angle viz., diffuser were conducted using ANSYS Fluent® software. Using simulation data, a trend analysis was conducted, and the empirical equations were derived for calculating the velocity variation and power variation in terms of the convergence/divergence angles. Working prototype models with optimum angles were fabricated for both the diffuser and concentrator. These models were then augmented with a wind turbine coupled with a 100 W, 24 V DC generator and tested to validate the simulation results. Upon analyzing the simulation data, it was found that a maximum velocity variation of 23.3% was achieved at an angle of 4.5° for the diffuser, whereas a maximum power variation of 65.1% was achieved at an angle of 3.6° for the same diffuser. The aforementioned improvement was achieved by optimizing divergence angle alone. The proposed designs of the diffuser- and concentrator-augmented wind turbine, as well as the empirical equations for calculating the velocity variation and power variation in terms of the divergence and convergence angle, are the major contributions of this article.