Three-dimensional models have been extensively used in several applications including computer-aided design (CAD), video games, medical imaging due to the processing capability improvement of computers, and the development of network bandwidth. Therefore, the necessity of implementing 3D mesh watermarking schemes aiming to protect copyright has increased considerably. In this paper, a blind robust 3D mesh watermarking method based on mesh saliency and wavelet transform for copyright protection is proposed. The watermark is inserted by quantifying the wavelet coefficients using quantization index modulation (QIM) according to the mesh saliency of the 3D semiregular mesh. The synchronizing primitive is the distance between the mesh center and salient points in the descending order. The experimental results show the high imperceptibility of the proposed scheme while ensuring a good robustness against a wide range of attacks including smoothing, additive noise, element reordering, similarity transformations, etc.