In this paper, we propose a novel direction of arrival (DOA) and polarization estimation method to address the problem of a coprime polarization-sensitive array (PSA). For a PSA, there may be a zero element in the covariance matrix when the polarized signal comes from a specific direction. To overcome this problem, we utilize the reconstructed received data to obtain a new covariance matrix whose elements are all non-zero. Then, the coprime MUSIC and sparse signal reconstruction algorithms are used for DOA estimation. In addition, the power of noise can be estimated in this polarization model, which improves upon the sparse signal reconstruction algorithm. Compared with the normalized algorithm, the proposed method offers favorable performance in terms of accuracy. Furthermore, our method can identify the peaks of the true DOAs at a low signal-to-noise ratio (SNR). The simulation results demonstrate the effectiveness of the proposed method.