During the course of studying silicon-containing diblock copolymers, it was discovered that poly(3,5di(trimethylsilyl)styrene)-block-poly(3,4-methylenedioxystyrene) (PDTMSS-b-PMDOS) showed very unusual thermal properties. The material can be recovered as a free-flowing powder despite heating above 250 °C. To better understand this behavior, homopolymers of the 3,5-disubstituted styrenes, poly(3,5-di(trimethylsilyl)styrene) (PDTMSS) and poly(3,5-di-tert-butylstyrene) (PDtBS), were prepared. These polymers are soluble in common organic solvents and formed clear, glassy thin films upon spin coating. These homopolymers were studied by differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), dynamic mechanical analysis (DMA), and temperature-programmed ellipsometry. These experiments document the lack of a conventional glass transition in these materials below their decomposition temperature. A series of statistical copolymers of PDTMSS and PDtBS with styrene was synthesized and studied by DSC in an attempt to establish the T g of the homopolymers by model-based extrapolation.