Block copolymers (BCPs) must necessarily have high interaction parameters (χ), a fundamental measure of block incompatibility, to self-assemble into sub-10-nanometer features. Unfortunately, a high χ often results from blocks that have disparate interfacial energies, which makes the formation of useful thin-film domain orientations challenging. To mitigate interfacial forces, polymers composed of maleic anhydride and two other components have been designed as top coats that can be spin-coated from basic aqueous solution in the ring-opened, acid salt form. When baked, the anhydride reforms and switches polarity to create a neutral layer enabling BCP feature alignment not possible by thermal annealing alone. Top coats were applied to the lamella-forming block copolymers poly(styrene-block-trimethylsilylstyrene-block-styrene) and poly(trimethylsilylstyrene-block-lactide), which were thermally annealed to produce perpendicular features with linewidths of 15 and 9 nanometers, respectively.
Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3-100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory-Huggins interaction parameters (χ), which enable formation of <10 nm features, etch selectivity between blocks for facile pattern transfer, and thin film self-assembly control. The present paper describes the synthesis and self-assembly of block copolymers composed of naturally derived oligosaccharides coupled to a silicon-containing polystyrene derivative synthesized by activators regenerated by electron transfer atom transfer radical polymerization. The block copolymers have a large χ and a low degree of polymerization (N) enabling formation of 5 nm feature diameters, incorporate silicon in one block for oxygen reactive ion etch contrast, and exhibit bulk and thin film self-assembly of hexagonally packed cylinders facilitated by a combination of spin coating and solvent annealing techniques. As observed by small angle X-ray scattering and atomic force microscopy, these materials exhibit some of the smallest block copolymer features in the bulk and in thin films reported to date.
Top coat design, coating, and optimization methodologies are introduced that facilitate the synthesis, application, and identification of neutral top coats for block copolymer (BP) thin films. Polymeric top coat composition, controlled via synthesis, determines interfacial wetting characteristics. Trimethylammonium salts of top coats improve solubility and coating uniformity. A "confined" island and hole test conveniently establishes (non)preferential wetting at the top coat/BP interface, which depends upon top coat composition. The utility of these three concepts was demonstrated with two high-χ, lamella-forming BPs, poly(styrene-block-4-trimethylsilylstyrene) (PS-b-PTMSS) having two periodicities L 0 = 18 and 22 nm and poly(styrene-block-methyltrimethylsilylmethacrylate) (PS-b-PTMSM) with L 0 = 15 nm. The combination of neutral top and bottom interfaces resulted in a perpendicular orientation of lamellae independent of BP film thickness (1−3 L 0 ) when thermally annealed for 60 s or less.
Integrating block copolymer self-assembly with existing lithography processes to enhance their patterning capability is a promising approach for manufacturing a variety of semiconductor devices and next-generation magnetic storage media. Sub-10 nm block copolymer domains are specifically targeted in many of these applications, yet there are relatively few block copolymers that can achieve these dimensions. Here the synthesis and self-assembly characteristics of a new block copolymer poly(trimethylsilylstyrene-b-D,L-lactide) (PTMSS-b-PLA) capable of forming domains as small as ∼5 nm are described. Several lamellar and cylinder forming diblocks were synthesized with bulk domain periodicities of 12−15 nm which are among the smallest domains yet reported for any neat block copolymer. Such small domains are possible because this new material has a large segment−segment interaction parameter which is an order of magnitude higher than poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and twice as large as poly(styrene-bdimethylsiloxane) (PS-b-PDMS), two commonly studied polymers for these applications. Furthermore, the PTMSS-b-PLA blocks have glass transitions well above room temperature with a large reactive ion etch rate contrast between them (∼28) which is at least 4 times greater than PS-b-PMMA due to incorporation of a trimethylsilyl group into the styrene monomer.
Two high-χ block copolymers, lamella-forming poly(styrene-block-[isoprene-random-epoxyisoprene]) (PS-PEI78, with 78 mol % epoxidation) and lamella-forming poly(4-trimethylsilylstyrene-block-d,l-lactide) (PTMSS-PLA), were used to study three combinations of interfacial neutrality involving at least one neutral interface. PS-PEI78 annealed on a nonpreferential polymer mat (SMG) produced perpendicular lamellae independent of film thickness, indicating a neutral substrate and neutral free surface. In contrast, the presence of only one neutral interface results in the formation of surface topography ("islands" and "holes") with 0.5L0 step heights. PS-PEI78 (neutral free surface) annealed on PS brush (PS block preferential) forms "half" islands and holes. The inverse experiment, PTMSS-PLA (with a PTMSS preferential free surface) annealed on a neutral (or near neutral) substrate surface, also generates 0.5L0 topography. These "half" island and hole structures are stable to extended thermal annealing. PS-PEI78 exposes both blocks at the free surface in contrast to PTMSS-PLA, which exposes just one. All three combinations of interfacial neutrality are explained by the precise balancing of the wetting tendencies of the two blocks. Evolution of the 0.5L0 motifs appears to be facilitated by a preference to form half-period thick nuclei in the initial stages of morphological development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.