Background
The neddylation pathway is overactivated in human cancers. Inhibition of neddylation pathway has emerged as an attractive anticancer strategy. The mechanisms underlying neddylation overactivation in cancer remain elusive. MLN4924/Pevonedistat, a first-in-class NEDD8-activating enzyme (NAE, E1) inhibitor, exerts significant anti-tumor effects, but its mutagenic resistance remains unresolved.
Methods
The expression of NEDD8-conjugating enzyme UBC12/UBE2M (E2) and NEDD8 were estimated by bioinformatics analysis and western blot in human lung cancer cell lines. The malignant phenotypes of lung cancer cells were evaluated both
in vitro
and
in vivo
upon UBC12 knockdown. Cell-cycle arrest was evaluated by quantitative proteomic analysis and propidium iodide stain and fluorescence - activated cell sorting (FACS). The growth of MLN4924 - resistant H1299 cells was also evaluated upon UBC12 knockdown.
Findings
The mRNA level of UBC12 in lung cancer tissues was much higher than that in normal lung tissues, increased with disease deterioration, and positively correlated with NEDD8 expression. Moreover, the overexpression of UBC12 significantly enhanced protein neddylation modification whereas the downregulation of UBC12 reduced neddylation modification of target proteins. Functionally, neddylation inactivation by UBC12 knockdown suppressed the malignant phenotypes of lung cancer cells both
in vitro
and
in vivo
. The quantitative proteomic analysis and cell cycle profiling showed that UBC12 knockdown disturbed cell cycle progression by triggering G
2
phase cell-cycle arrest. Further mechanistical studies revealed that UBC12 knockdown inhibited Cullin neddylation, led to the inactivation of CRL E3 ligases and induced the accumulation of tumor-suppressive CRL substrates (p21, p27 and Wee1) to induce cell cycle arrest and suppress the malignant phenotypes of lung cancer cells. Finally, UBC12 knockdown effectively inhibited the growth of MLN4924-resistant lung cancer cells.
Interpretation
These findings highlight a crucial role of UBC12 in fine-tuned regulation of neddylation activation status and validate UBC12 as an attractive alternative anticancer target against neddylation pathway.
Fund
Chinese Minister of Science and Technology grant (2016YFA0501800), National Natural Science Foundation of China (Grant Nos. 81401893, 81625018, 81820108022, 81772470, 81572340 and 81602072), Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-10-E00056), Program of Shanghai Academic/Technology Research Leader (18XD1403800), National Thirteenth Five-Year Science and Technology Major Special Project for New Drug and Development (2017ZX09304001). The funders had no role in study design, data collection, data analysis, interpretation, writing of the...