Quantitative susceptibility mapping (QSM) is a novel MRI technique for measuring tissue magnetic susceptibility in 3D. While there are numerous algorithms developed to solve this ill-posed inverse problem, estimating susceptibility maps with a wide range of values is still problematic. In cases such as large veins, contrast agent uptake, and intracranial hemorrhages, extreme susceptibility values in focal areas cause severe streaking artifacts. To enable the reduction of these artifacts while preserving subtle susceptibility contrast, a two-level QSM reconstruction algorithm (STAR-QSM) was developed in this study by tuning a regularization parameter to automatically reconstruct both large and small susceptibility values. Compared to current state-of-the-art QSM methods such as iLSQR, STAR-QSM significantly reduced streaking artifacts while preserving sharp boundaries for blood vessels of mouse brains in vivo and fine anatomical details of high resolution mouse brains ex vivo. Brain image data from patients with cerebral hematoma and multiple sclerosis further illustrated the superiority of this method in reducing streaking artifacts caused by large susceptibility sources while maintaining sharp anatomical details. STAR-QSM is implemented in STI Suite, a comprehensive shareware for susceptibility imaging and quantification.
miRNAs have the potential to act on diverse downstream genes, and miRNA signatures of HPV-infected tissues may provide insight into HPV-related carcinogenesis. We set out to profile miRNA expression in HPV-infected samples and relate this to histological and grade-specific alterations in the spectrum of cervical carcinogenesis in vivo. A total of 31 miRNAs showed significant and continuous expression along with the progression from normal cervical tissue to cancer, and six of them were validated in 133 samples. By bioinformatics analyses, we established a putative HPV-associated miRNA-mRNA regulatory network, showing that miR-29 is the most highly enriched. We also found that YY1 and CDK6 were both positively correlated with E6/E7 RNA expression and targeted by tumour-suppressive miR-29. Evidence of miR-29 involvement in HPV infection was further verified in patient samples and by various experimental approaches. Taken together, our results suggest that HPVs have oncogenic properties at least in part by reshaping the milieu of cellular miRNAs. miR-29 restrains cell cycle progression and induces apoptosis via YY1 and CDK6 promoting malignant transformation induced by HPV, although the abnormality of miR-29 in HPV-infected cells might be regulated in an indirect way.
MicroRNAs (miRNAs) act as important gene regulators in human genomes and their aberrant expression links to many malignancies. We previously identified a different characteristic miRNA expression profile in cervical cancer from that in cervical normal tissues, including the downregulated miR-424. However, the role and mechanism of miR-424 in cervical cancer still remain unknown. Here, we focused on identifying the tumor-suppressive function and clinical significance of miR-424 and exploring the mechanistic relevance by characterizing its target. We showed a significantly decreased expression of miR-424 in 147 cervical cancer tissues versus 74 cervical normal tissues by performing quantitative RT-PCR. In 147 cervical cancer tissue samples, low-level expression of miR-424 was positively correlated with poor tumor differentiation, advanced clinical stage, lymph node metastasis and other poor prognostic clinicopathological parameters. Further in vitro observations showed that enforced expression of miR-424 inhibited cell growth by both enhancing apoptosis and blocking G1/S transition, and suppressed cell migration and invasion in two human cervical cancer cell lines, SiHa and CaSki, implying that miR-424 functions as a tumor suppressor in the progression of cervical cancer. Interestingly, overexpression of miR-424 inhibited the expression of protein checkpoint kinase 1 (Chk1) and phosphorylated Chk1 (p-Chk1) at residues Ser345 and decreased the activity of luciferase-reporter containing the 3'-untranslated region (UTR) of Chk1 with predicted miR-424-binding site. Moreover, miR-424 expression levels were inversely correlated with Chk1 and p-Chk1 protein levels in both cervical cancer and normal tissues. Furthermore, RNAi-mediated knockdown of Chk1 decreased matrix metalloproteinase 9 expression and phenocopied the tumor suppressive effects of miR-424 in cell models. Taken together, our results identify a crucial tumor suppressive role of miR-424 in the progression of cervical cancer at least partly via upreglating the expression of Chk1 and p-Chk1, and suggest that miR-424 might be a candidate of prognostic predictor or an anticancer therapeutic target for cervical cancer patients.
BackgroundRecent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents.MethodsSeventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity.ResultsThere were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants.ConclusionsOur data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.