Previous studies have shown that sialidasetreated mammalian erythrocytes were rapidly eliminated from circulation. In contrast, chicken asialoerythrocytes remained fully viable. This investigation was undertaken to ascertain the reason for this difference in behavior as well as to determine the extent of the similarity of the physiological mechanism for the elimination from circulation of asialoglycoproteins and mammalian asialoerythrocytes. To that end, erythrocytes from dogs, rabbits, and chickens were each subjected to the action of galactose oxidase (D-galactose:oxygen 6-oxidoreductase; EC 1.1.3.9) both before and after sialidase (acylneuraminyl hydrolase; EC 3.2.1.18) treatment. The viability of the autologously transfused erythrocytes in circulation was monitored by Na251CrO4 labeling. Galactose oxidase had no deleterious effect on the viability of either dog or chicken erythrocytes, nor did it restore the viability of dog or rabbit asialoerythrocytes. On the other hand, desialated chicken erythrocytes, which were fully viable, were rendered nonviable upon treatment with galactose oxidase. It may be concluded therefore that (a) the physiological mechanism of elimination of mammalian asialoerythrocytes from circulation is not the same as that for plasma asialoglycoproteins and (b) the treatment of chicken asialoerythrocytes with galactose oxidase results in the oxidation at carbons 6 of the galactosyl-or N-acetylgalactosaminyl residues, thereby rendering the erythrocytes nonviable.