A major problem associated with therapy is the inability to deliver pharmaceuticals to a specific site of the body without causing nonspecific toxicity. Development of magnetic nanoparticles and techniques for their safe transport and concentration in specific sites in the body would constitute a powerful tool for gene/drug therapy in vivo. Furthermore, drug delivery in vitro could improve further if the drugs were modified with antibodies, proteins or ligands. For in vivo experiments, magnetic nanoparticles were conjugated with plasmid DNA expressing GFP and then coated with chitosan. These particles were injected into mice through tail vein and directed to heart and kidney by means of external magnets of 25 gauss or 2kA –kA/m. These particles were concentrated in the lungs, heart, and kidney of mice and the expression of GFP in these sites were monitored. The expression of GFP in specific locations was visualized by whole-body fluorescent imaging and the concentration of these particles in the designated body locations was confirmed by transmission electron microscopy. In another model system, we used atrial natriuretic peptide (ANP) and Carcino Embryonic Antigen (CEA) antibodies coupled to the chitosan coated magnetic nanoparticles to target cells in vitro. The present work demonstrates that a simple external magnetic field is all that is necessary to target a drug to a specific site inside the body without the need to functionalize the nanoparticles. However, the option to use magnetic targeting with external magnets on functionalized nanoparticles could prove as a more efficient means of drug delivery.