A hybrid segmentation algorithm is proposed is this paper to extract the blood vesselsfrom the fundus image of retina. Fundus camera captures the posterior surface of the eye and thecaptured images are used to diagnose diseases, like Diabetic Retinopathy, Retinoblastoma, Retinalhaemorrhage, etc. Segmentation or extraction of blood vessels is highly required, since the analysisof vessels is crucial for diagnosis, treatment planning, and execution of clinical outcomes in the fieldof ophthalmology. It is derived from the literature review that no unique segmentation algorithm issuitable for images of different eye-related diseases and the degradation of the vessels differ frompatient to patient. If the blood vessels are extracted from the fundus images, it will make thediagnosis process easier. Hence, this paper aims to frame a hybrid segmentation algorithmexclusively for the extraction of blood vessels from the fundus image. The proposed algorithm ishybridized with morphological operations, bottom hat transform, multi-scale vessel enhancement(MSVE) algorithm, and image fusion. After execution of the proposed segmentation algorithm, thearea-based morphological operator is applied to highlight the blood vessels. To validate theproposed algorithm, the results are compared with the ground truth of the High-Resolution Fundus(HRF) images dataset. Upon comparison, it is inferred that the proposed algorithm segments theblood vessels with more accuracy than the existing algorithms.