In this article, we consider the nonlinear viscoelastic equationwith initial conditions and Dirichlet boundary conditions. We first prove a local existence theorem and show, for some appropriate assumption on g and the initial data, that this solution is global with energy which decays exponentially under the potential well. Secondly, not only finite time blow-up for solutions starting in the unstable set is proved, but also under some appropriate assumptions on g and the initial data, a blow-up result with positive initial energy is established. Finally, we also prove the boundedness of global solutions for strong (ω > 0) damping case.