In this paper, we establish the Fujita type theorem for a homogeneous Neumann outer problem of the coupled quasilinear convection–diffusion equations and formulate the critical Fujita exponent. Besides, the influence of diffusion term, reaction term, and convection term on the global existence and the blow-up property of the problem is revealed. Finally, we discuss the large time behavior of the solution to the outer problem in the critical case and describe the asymptotic behavior of the solution.