We study the properties of harmonic measure in semi-uniform domains. Aikawa and Hirata showed in [AH08] that, for John domains satisfying the capacity density condition (CDC), the doubling property for harmonic measure is equivalent to the domain being semi-uniform. Our first result removes the John condition by showing that any domain satisfying the CDC whose harmonic measure is doubling is semiuniform. Next, we develop a substitute for some classical estimates on harmonic measure in nontangentially accessible domains that works in semi-uniform domains.We also show that semi-uniform domains with uniformly rectifiable boundary have big pieces of chord-arc subdomains. We cannot hope for big pieces of Lipschitz subdomains (as was shown for chord-arc domains by David and Jerison [DJ90]) due to an example of Hrycak, which we review in the appendix.Finally, we combine these tools to study the A ∞ -property of harmonic measure. For a domain with Ahlfors-David regular boundary, it was shown by Hofmann and Martell that the A ∞ property of harmonic measure implies uniform rectifiability of the boundary [HM15, HLMN17] . Since A ∞ -weights are doubling, this also implies the domain is semi-uniform. Our final result shows that these two properties, semi-uniformity and uniformly rectifiable boundary, also imply the A ∞ property for harmonic measure, thus classifying geometrically all domains for which this holds.