In the western United States where dairy wastewaters are commonly land applied, there are concerns over individuals being exposed to airborne pathogens. In response, a quantitative microbial risk assessment (QMRA) was performed to estimate infectious risks after inhalation exposure of pathogens aerosolized during center pivot irrigation of diluted dairy wastewaters. The dispersion of pathogens (Campylobacter jejuni, Escherichia coli O157:H7, non-O157 E. coli, Listeria monocytogenes, and Salmonella spp.) was modeled using the atmospheric dispersion model, AERMOD. Pathogen concentrations at downwind receptors were used to calculate infectious risks during one-time (1, 8, and 24 h) and multiday (7 d at 1 h d −1 ) exposure events using a β-Poisson dose−response model. This assessment considered risk of infection in residential populations that were 1 to 10 km from a center pivot operation. In the simulations, infectious risks were estimated to be the greatest in individuals closest to the center pivot, as a result of a higher pathogen dose. On the basis of the results from this QMRA, it is recommended that wastewaters only be applied during daylight hours when inactivation and dilution of airborne pathogens is highest. Further refinement of the dispersion and dose−response models should be considered to increase the utility of this QMRA.