2019
DOI: 10.17798/bitlisfen.496782
|View full text |Cite
|
Sign up to set email alerts
|

Böbrek-ilhamlı Algoritma ile Ayarlanan PID Kontrolör Kullanarak DC Motor Hız Kontrolü

Abstract: Öz DC motor hız kontrol sistemlerinin birçok endüstriyel uygulamasında, çoğunlukla oransal-integral-türevsel (PID) kontrolörler kullanılmaktadır. Bu çalışmada, DC motor hız kontrolünün en uygun PID kontrolör parametreleri, yani oransal (Kp), integral (Ki) ve türev (Kd) kazançları, etkin ve hızlı bir ayar yöntemi olan böbrek-ilhamlı algoritma (Kidney-inspired Algorithm-KA) ile belirlenmektedir. Kontrol sisteminin tasarımında, kontrolör parametrelerinin KA tarafından optimize edilebilmesi için zaman bölgesi taba… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 25 publications
0
5
0
3
Order By: Relevance
“…Those approaches include both PID and FOPID controllers. Table 5 presents the time domain performance comparison of ISMA-FOPID with manta ray foraging optimization based FOPID controller (MRFO-FOPID) (Ekinci et al, 2021b), chaotic atom search optimization algorithm based FOPID (ChASO-FOPID) controller (Hekimoğlu, 2019a), atom search optimization based FOPID (ASO-FOPID) controller (Hekimoğlu, 2019a), stochastic fractal search algorithm based FOPID (SFS-FOPID) controller (Saini et al, 2020), grey wolf optimization based FOPID (GWO-FOPID) controller (Agarwal et al, 2018), Lévy flight distribution with Nelder–Mead algorithm based PID (LFDNM-PID) controller (Izci, 2021), Harris–Hawks optimization based PID (HHO-PID) controller (Ekinci et al, 2020b), Henry gas solubility optimization based PID (HGSO-PID) controller (Ekinci et al, 2021a), SMA based PID (SMA-PID) controller (Izci and Ekinci, 2021), atom search optimization based PID (ASO-PID) controller (Hekimoğlu, 2019a), grey wolf optimization based PID (GWO-PID) controller (Agarwal et al, 2018), stochastic fractal search algorithm based PID (SFS-PID) controller (Bhatt et al, 2019), kidney-inspired algorithm based PID (KA-PID) controller (Hekimoğlu, 2019b), sine–cosine algorithm based PID (SCA-PID) controller (Agarwal et al, 2017), invasive weed optimization algorithm based PID (IWO-PID) controller (Khalilpour et al, 2011), and particle swarm optimization based PID (PSO-PID) controller (Khalilpour et al, 2011).…”
Section: Comparative Simulation Results and Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Those approaches include both PID and FOPID controllers. Table 5 presents the time domain performance comparison of ISMA-FOPID with manta ray foraging optimization based FOPID controller (MRFO-FOPID) (Ekinci et al, 2021b), chaotic atom search optimization algorithm based FOPID (ChASO-FOPID) controller (Hekimoğlu, 2019a), atom search optimization based FOPID (ASO-FOPID) controller (Hekimoğlu, 2019a), stochastic fractal search algorithm based FOPID (SFS-FOPID) controller (Saini et al, 2020), grey wolf optimization based FOPID (GWO-FOPID) controller (Agarwal et al, 2018), Lévy flight distribution with Nelder–Mead algorithm based PID (LFDNM-PID) controller (Izci, 2021), Harris–Hawks optimization based PID (HHO-PID) controller (Ekinci et al, 2020b), Henry gas solubility optimization based PID (HGSO-PID) controller (Ekinci et al, 2021a), SMA based PID (SMA-PID) controller (Izci and Ekinci, 2021), atom search optimization based PID (ASO-PID) controller (Hekimoğlu, 2019a), grey wolf optimization based PID (GWO-PID) controller (Agarwal et al, 2018), stochastic fractal search algorithm based PID (SFS-PID) controller (Bhatt et al, 2019), kidney-inspired algorithm based PID (KA-PID) controller (Hekimoğlu, 2019b), sine–cosine algorithm based PID (SCA-PID) controller (Agarwal et al, 2017), invasive weed optimization algorithm based PID (IWO-PID) controller (Khalilpour et al, 2011), and particle swarm optimization based PID (PSO-PID) controller (Khalilpour et al, 2011).…”
Section: Comparative Simulation Results and Discussionmentioning
confidence: 99%
“…Better statistical values of objective function in terms of mean, SD , best, worst, and median values for the AVR and DC motor speed control systems were achieved by the proposed ISMA. The efficacy of the proposed approach for the DC motor system was compared to other available and effective approaches of manta ray foraging optimization (Ekinci et al, 2021b), chaotic atom search optimization algorithm (Hekimoğlu, 2019a), atom search optimization (Hekimoğlu, 2019a), stochastic fractal search algorithm (Saini et al, 2020), grey wolf optimization (Agarwal et al, 2018) based FOPID controllers and Lévy flight distribution with Nelder–Mead algorithm (Izci, 2021), Harris–Hawks optimization (Ekinci et al, 2020b), Henry gas solubility optimization (Ekinci et al, 2021a), SMA (Izci and Ekinci, 2021), atom search optimization (Hekimoğlu, 2019a), grey wolf optimization (Agarwal et al, 2018), stochastic fractal search algorithm (Bhatt et al, 2019), kidney-inspired algorithm (Hekimoğlu, 2019b), sine–cosine algorithm (Agarwal et al, 2017), invasive weed optimization algorithm (Khalilpour et al, 2011), and particle swarm optimization (Khalilpour et al, 2011) based PID controllers for further assessment. Likewise, the proposed approach for the AVR control system was compared with other available and effective approaches of hybrid simulated annealing–Manta ray foraging optimization (Micev et al, 2021a), improved whale optimization algorithm (Mokeddem and Mirjalili, 2020), atom search optimization (Ekinci et al, 2020a), whale optimization algorithm (Mosaad et al, 2019), teaching–learning-based optimization (Mosaad et al, 2018), particle swarm optimization (Sahib, 2015) based PIDD 2 controllers and sine–cosine algorithm (Ayas and Sahin, 2021), jaya optimization algorithm (Jumani et al, 2020), Henry gas solubility optimization (Ekinci et al, 2020c), chaotic yellow saddle goatfish algorithm (Micev et al, 2020), salp swarm optimization algorithm (Khan et al, 2019), cuckoo search algorithm (Sikander et al, 2018), simulated annealing algorithm (Lahcene et al, 2017) based FOPID controllers along with equilibrium optimizer (Micev et al, 2021b), genetic algorithm (Elsisi, 2021), cuckoo search algorithm (Sikander and Thakur, 2020…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…In reference [7]; invasive weed optimization (IWO) is used for same purpose but as being objective function ITAE was not preferred. In reference [8]; kidney-inspired algorithm (KA) is used to design KA-based PID controller for DC-MSCS. In reference [9]; to optimize PID controller in DC-MSCS, whale optimization (WOA) and moth-flame optimization (MFO) algorithms are used.…”
Section: Effect Of Derivative Filter Usage On a Pid Controller Optimi...mentioning
confidence: 99%
“…Ancak bu yöntemler en uygun sonucu elde etmede başarılı olamadıklarından [13,14] araştırmacılar son zamanlarda evrimsel algoritmalar kullanarak PID denetleyicisinin parametre değerlerini ayarlamıştır. Atom arama optimizasyonu (ASO) [3], kaotik atom arama optimizasyonu (ChASO) [3], böbrek ilhamlı (KA) [15], diferansiyel evrim (DE) [16], genetik (GA) [17], parçacık sürüsü optimizasyonu (PSO) [5], kısıtlı parçacık sürüsü optimizasyonu (CPSO) [7], sinüs kosinüs (SCA) [18], geliştirilmiş sinüs-kosinüs (ISCA) [19], gri kurt optimizasyonu (GWO) [4,20], harris şahinleri optimizasyonu (HHO) [8,21], henry gaz çözünürlüğü optimizasyonu (HGSO) [22], karşıt-tabanlı henry gaz çözünürlüğü optimizasyonu (OBL-HGSO) [22], jaya optimizasyonu (JOA) [23], salp sürüsü (SSA) [24], stokastik fraktal arama (SFS) [1,25], yapay arı kolonisi (ABC) [26], yerçekimsel arama (GSA) [27] ve yabani ot optimizasyonu (IWO) [2] algoritmaları DC motor hız kontrolünde PID denetleyici parametrelerini en uygun değere ayarlamak için kullanılmıştır.…”
Section: Introductionunclassified