Climate change may lead to higher nest temperatures, which may increase embryo development rate but reduce hatchling size and growth. Larger body size permits better performance, making growth an important fitness trait. In ectotherms, growth is affected by temperature and food quality. To segregate the effects of incubation temperature vs. alimentation on the growth of the Mexican black spiny-tailed iguana, Ctenosaura pectinata, we incubated eggs at 29 or 32 °C, and hatchlings were kept at 30 °C and fed either high- or low-quality food for 1 year, with body size and mass being recorded every 2 weeks. Iguanas incubated at 29 °C grew faster than those incubated at 32 °C. However, food quality had a larger effect on growth than incubation temperature; iguanas fed with high-quality food reached larger body sizes. Growth models suggested that differences in growth between incubation temperatures and food types remain throughout their lives. We found that incubation temperature had long-lasting effects on an ectotherm, and higher incubation temperatures might lead to reduced growth and maturation at a later age. However, food might transcend the effect of increased incubation temperature; therefore, good alimentation might mitigate effects of climate change on growth.