Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nuclear reactors are very complex units in which many physical processes occur simultaneously. Efficient heat removal from the reactor core is the most important of these processes. Heat is removed from the reactor core via heat conduction, radiation, and convection. Thus, convective heat transfer and its conditions play a crucial role in the operation and safety of nuclear reactors. Convective heat transfer in nuclear reactors is a very complex process, which is dependent on many conditions and is usually described by different correlations which combine together the most important criteria numbers, such as the Nusselt, Reynolds, and Prandtl numbers. The applicability of different correlations is limited by the conditions of heat transfer in nuclear reactors. The selection of the proper correlation is very important from the reactor design accuracy and safety points of view. The objective of this novel review is to conduct a comprehensive analysis of the models and correlations which may be applied for convective heat transfer description and modeling in various types of nuclear reactors. The authors review the most important research papers related to convective heat transfer correlations which were obtained by experimental or numerical research and applied calculations and heat transfer modeling in nuclear reactors. Special focus is placed on pressurized water reactors (PWRs), boiling water reactors (BWRs), CANDU reactors, small modular reactors (SMRs), and molten salt reactors (MSRs). For each type of studied reactor, the correlations are grouped and presented in tables with their application ranges and limitations. The review results give insights into the main research directions related to convective heat transfer in nuclear reactors and set a compendium of the correlations that can be applied by engineers and scientists focused on heat transfer in nuclear reactors. Prospective research directions are also identified and suggested to address the ongoing challenges in the heat transfer modeling of present and next-generation nuclear reactors.
Nuclear reactors are very complex units in which many physical processes occur simultaneously. Efficient heat removal from the reactor core is the most important of these processes. Heat is removed from the reactor core via heat conduction, radiation, and convection. Thus, convective heat transfer and its conditions play a crucial role in the operation and safety of nuclear reactors. Convective heat transfer in nuclear reactors is a very complex process, which is dependent on many conditions and is usually described by different correlations which combine together the most important criteria numbers, such as the Nusselt, Reynolds, and Prandtl numbers. The applicability of different correlations is limited by the conditions of heat transfer in nuclear reactors. The selection of the proper correlation is very important from the reactor design accuracy and safety points of view. The objective of this novel review is to conduct a comprehensive analysis of the models and correlations which may be applied for convective heat transfer description and modeling in various types of nuclear reactors. The authors review the most important research papers related to convective heat transfer correlations which were obtained by experimental or numerical research and applied calculations and heat transfer modeling in nuclear reactors. Special focus is placed on pressurized water reactors (PWRs), boiling water reactors (BWRs), CANDU reactors, small modular reactors (SMRs), and molten salt reactors (MSRs). For each type of studied reactor, the correlations are grouped and presented in tables with their application ranges and limitations. The review results give insights into the main research directions related to convective heat transfer in nuclear reactors and set a compendium of the correlations that can be applied by engineers and scientists focused on heat transfer in nuclear reactors. Prospective research directions are also identified and suggested to address the ongoing challenges in the heat transfer modeling of present and next-generation nuclear reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.