An analytical and experimental investigation including vibratory effects of flashing flow in a tube with a sharp edged entrance is presented. A free streamline flow model is applied to predict choking in single-component two-phase flow. By identifying three separate regimes (i.e. jet flow, two-phase homogeneous flow, and single-phase liquid flow) in the flashing flow system, an expression is obtained for the prediction of the minimum stagnation pressure loss under choked flow conditions. A normal shock located between the flashing two-phase mixture and the single-phase liquid was experimentally observed. The location of the shock is predicted as a function of the stagnation pressure drop across the tube. The analytical predictions are verified by experimental data.
for the guidance Bnd s'uggestions given.during the course of this project concerning the acquisition and reduction of data. Acknowledgments also a r e due to Mr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.