Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To study telomere maintenance mechanism (TMM) activation during malignant transformation, we compared neurofibroma (NF) and malignant peripheral nerve sheath tumor (MPNST) in the same patient with type-1 neurofibromatosis (NF1), a total of 20 NF-MPNST pairs in 20 NF1 patients. These comparisons minimized genetic bias and contrasted only changes associated with malignant transformation, while subtracting changes that developed upon the transformation of normal cells to the benign tumor. TGF- β superfamily genes were found to activate the PAX and SOX transcription factors, leading to TMM activation. BMPER activates PAX6 through BMP2 and PAX7 through BMP4 ; BMP15 activates SOX14 ; and INHBC activates PAX9 and SOX14 . The activated PAX and SOX genes sequentially establish the core architecture of the RAD52-dependent alternative lengthening of telomeres (ALT). Specifically, PAX7 activates the recombinase ( RAD52 ) and a negative regulator ( SLX4IP ). PAX6 and SOX14 activate positive regulators ( BLM and BRCA2, respectively). PAX9 and SOX14 activate RAD9B and FEN1, which are responsible for the stability of homologous recombination intermediates and increase, together with RAD52, the telomere length. Telomere elongation achieved by the activation of PAX7 and PAX9 is associated with a poor prognosis. We demonstrated that TGF- β superfamily-induced transcriptional activation pathways activated the RAD52-dependent ALT during malignant transformation of MPNSTs.
To study telomere maintenance mechanism (TMM) activation during malignant transformation, we compared neurofibroma (NF) and malignant peripheral nerve sheath tumor (MPNST) in the same patient with type-1 neurofibromatosis (NF1), a total of 20 NF-MPNST pairs in 20 NF1 patients. These comparisons minimized genetic bias and contrasted only changes associated with malignant transformation, while subtracting changes that developed upon the transformation of normal cells to the benign tumor. TGF- β superfamily genes were found to activate the PAX and SOX transcription factors, leading to TMM activation. BMPER activates PAX6 through BMP2 and PAX7 through BMP4 ; BMP15 activates SOX14 ; and INHBC activates PAX9 and SOX14 . The activated PAX and SOX genes sequentially establish the core architecture of the RAD52-dependent alternative lengthening of telomeres (ALT). Specifically, PAX7 activates the recombinase ( RAD52 ) and a negative regulator ( SLX4IP ). PAX6 and SOX14 activate positive regulators ( BLM and BRCA2, respectively). PAX9 and SOX14 activate RAD9B and FEN1, which are responsible for the stability of homologous recombination intermediates and increase, together with RAD52, the telomere length. Telomere elongation achieved by the activation of PAX7 and PAX9 is associated with a poor prognosis. We demonstrated that TGF- β superfamily-induced transcriptional activation pathways activated the RAD52-dependent ALT during malignant transformation of MPNSTs.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily. BMPs play crucial roles in embryogenesis and bone remodeling. Recently, BMP signaling has been found to have diverse effects on different types of tumors. In this review, we summarized the effects of BMP signaling on gynecologic cancer. BMP signaling has tumor‐promoting effects on ovarian cancer (OC) and endometrial cancer (EC), whereas it has tumor‐suppressing effects on uterine cervical cancer (UCC). Interestingly, EC has frequent gain‐of‐function mutations in ACVR1, encoding one of the type I BMP receptors, which are also observed in fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. Little is known about the relationship between BMP signaling and other gynecologic cancers. Tumor‐promoting effects of BMP signaling in OC and EC are dependent on the promotion of cancer stemness and epithelial–mesenchymal transition (EMT). In accordance, BMP receptor kinase inhibitors suppress the cell growth and migration of OC and EC. Since both cancer stemness and EMT are associated with chemoresistance, BMP signaling activation might also be an important mechanism by which OC and EC patients acquire chemoresistance. Therefore, BMP inhibitors are promising for OC and EC patients even if they become resistant to standard chemotherapy. In contrast, BMP signaling inhibits UCC growth in vitro. However, the in vivo effects of BMP signaling have not been elucidated in UCC. In conclusion, BMP signaling has a variety of functions, depending on the types of gynecologic cancer. Therefore, targeting BMP signaling should improve the treatment of patients with gynecologic cancer.
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.