Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Human physique classification by somatotype assumes that adult humans are geometric similar to each other. However, this assumption has yet to be adequately tested in athletic and nonexercising human populations. In this study, we assessed this assumption by comparing the mass exponents associated with girth measurements taken at 13 different sites throughout the body in 478 subjects (279 athletic subjects, and 199 nonexercising controls). Corrected girths which account for subcutaneous adipose tissue at the upper arm, thigh, and calf sites, and which simulate muscle circumference, were also calculated. If subjects are geometrically similar to each other, girth exponents should be approximately proportional to M(1/3), where M is the subjects' body mass. This study confirms that human adult physiques are not geometrically similar to each other. In both athletic subjects and nonexercising controls, body circumferences/limb girths develop at a greater rate than that anticipated by geometric similarity in fleshy sites containing both muscle and fat (upper arms and legs), and less than anticipated in bony sites (head, wrists, and ankles). Interestingly, head girths appear to remain almost constant, irrespective of subjects' body size/mass. The results also suggest that thigh muscle girths of athletes and controls increase at a greater rate than that predicted by geometric similarity, proportional to body mass (M(0.439) and M(0.377), respectively). These systematic deviations from geometric similarity have serious implications for the allometric scaling of variables such as energy expenditure, oxygen uptake, anaerobic power, and thermodynamic or anthropometric studies involving individuals of differing size.
Human physique classification by somatotype assumes that adult humans are geometric similar to each other. However, this assumption has yet to be adequately tested in athletic and nonexercising human populations. In this study, we assessed this assumption by comparing the mass exponents associated with girth measurements taken at 13 different sites throughout the body in 478 subjects (279 athletic subjects, and 199 nonexercising controls). Corrected girths which account for subcutaneous adipose tissue at the upper arm, thigh, and calf sites, and which simulate muscle circumference, were also calculated. If subjects are geometrically similar to each other, girth exponents should be approximately proportional to M(1/3), where M is the subjects' body mass. This study confirms that human adult physiques are not geometrically similar to each other. In both athletic subjects and nonexercising controls, body circumferences/limb girths develop at a greater rate than that anticipated by geometric similarity in fleshy sites containing both muscle and fat (upper arms and legs), and less than anticipated in bony sites (head, wrists, and ankles). Interestingly, head girths appear to remain almost constant, irrespective of subjects' body size/mass. The results also suggest that thigh muscle girths of athletes and controls increase at a greater rate than that predicted by geometric similarity, proportional to body mass (M(0.439) and M(0.377), respectively). These systematic deviations from geometric similarity have serious implications for the allometric scaling of variables such as energy expenditure, oxygen uptake, anaerobic power, and thermodynamic or anthropometric studies involving individuals of differing size.
The purpose of this cross-sectional study was to investigate leg muscle power and compare two activities (jumping and cycling) in 383 girls and 407 boys ages 9-19 years. Results in anthropometric characteristics and jumping performance were comparable until midadolescence, and sex differences were observed. Lean leg volume (LLV) was the reason for most of the variance (76% in girls and 88% in boys) in jumping performance. However the LLV exponent was higher than expected in boys but not girls. Therefore, unidentified qualitative changes of muscle function during growth in boys must be considered. The squat jump index (SJI) was highly correlated to cycling peak power (CPP; N = 790, r = .94, p < .001). Although prediction error of CPP from SJI was less than 5% when considering each sex-and-age group, individual errors mounted to 40%. Due to its practicability, SJI is recommended in large-scale developmental prospective studies. However, cycling and jumping protocols are not interchangeable when measuring peak power values.
There are gender differences in the longitudinal growth of performance on the WanT. Regardless of gender differences, body mass and skin-fold thicknesses appear to be the best anthropometric predictors of WAnT determined PP and MP in young people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.