Training-induced adaptations in aerobic fitness have been extensively studied in adults, and some exercise scientists have recommended similar training programmes for young people. However, the subject of the response to aerobic training of children and adolescents is controversial. The effects of exercise training on prepubertal children are particularly debatable. The latter may be partly explained by different training designs, which make comparisons between studies very problematic. We have analysed the procedures applied to protocol design and training methods to highlight the real impact of aerobic training on the peak oxygen uptake (V-dotO2) of healthy children and adolescents. In accordance with previously published reviews on trainability in youngsters, research papers were rejected from the final analysis according to criteria such as the lack of a control group, an unclear training protocol, inappropriate statistical procedures, small sample size, studies with trained or special populations, or with no peak V-dotO2 data. Factors such as maturity, group constitution, consistency between training and testing procedures, drop out rates, or attendance were considered, and possible associations with changes in peak V-dotO2 with training are discussed. From 51 studies reviewed, 22 were finally retained. In most of the studies, there was a considerable lack of research regarding circumpubertal individuals in general, and particularly in girls. The results suggest that methodologically listed parameters will exert a potential influence on the magnitude of peak V-dotO2 improvement. Even if little difference is reported for each parameter, it is suggested that the sum of errors will result in a significant bias in the assessment of training effects. The characteristics of each training protocol were also analysed to establish their respective potential influence on peak V-dotO2 changes. In general, aerobic training leads to a mean improvement of 5-6% in the peak V-dotO2 of children or adolescents. When only studies that reported significant training effect were taken into account, the mean improvement in peak V-dotO2 rose to 8-10%. Results suggested that intensities higher than 80% of maximal heart rate are necessary to expect a significant improvement in peak V-dotO2. There is clearly a need for longitudinal or cross-sectional studies that investigate the relationship between maturity and training with carefully monitored programmes. Further research is also needed to compare interval training and continuous training.
During growth and maturation, the study of very brief high-intensity exercise has not received the same attention from researchers as, for instance, aerobic function. In anaerobic tasks or sports events such as sprint cycling, jumping or running, the children's performance is distinctly lower than that of adults. This partly reflects children's lesser ability to generate mechanical energy from chemical energy sources during short-term intensive activity. For many years, various attempts have been made to quantify the anaerobic energy yield in maximal-intensity exercise, but many assumptions have had to be made with respect to mechanical efficiency, lactate turnover, dilution space for lactate, and so on. During childhood and adolescence, direct measurements of the rate or capacity of anaerobic pathways for energy turnover presents several ethical and methodological difficulties. Thus, rather than measure energy supply, paediatric exercise scientists have concentrated on measuring short-term muscle power (STMP) by means of standardised tests. Previously, investigators have used various protocols such as short-term cycling power tests, vertical jump tests or running tests. Cycling ergometer tests are the most common. There is, however, no ideal test, and so it is important to acknowledge the limitations of each test. Progress has been made in assessing instantaneous cycling STMP from a single exercise bout. Several investigators have reported STMP increases with age and have suggested that late pubertal period may accentuate anaerobic glycolysis. Mass-related STMP was shown to increase dramatically during childhood and adolescence, whereas the corresponding increase in peak blood lactate was considerably lower. The latter results support the hypothesis that the difference observed between children and adolescents during STMP testing is more related to neuromuscular factors, hormonal factors and improved motor coordination, rather than being an indicator of reduced lactate-producing glycolysis mechanism. Evidence suggesting a causal link between the ability to generate lactate during exercise and sexual maturation is weak. Despite the majority of research being focused on short-term power output, the study of anaerobic function warrants more investigation. Spectacular progress is being made at the moment in the development of molecular biology tools that can be used in, for example, the genetic dissection of human performance phenotypes. Noninvasive power tools like magnetic resonance imaging and magnetic resonance spectroscopy are presently used to determine possible differences in phosphorus compounds between fast and slow fibre types. Undoubtedly these tools will lead to more information in the near future regarding STMP capabilities of the growing child.
The aim of the present study was to investigate the effects of voluntary maximal leg strength training on peak power output (Wpeak), vertical jump performance, and field performances in junior soccer players. Twenty-two male soccer players participated in this investigation and were divided into 2 groups: A resistance training group (RTG; age 17 +/- 0.3 years) and a control group (CG; age 17 +/- 0.5 years). Before and after the training sessions (twice a week for 2 months), Wpeak was determined by means of a cycling force-velocity test. Squat jump (SJ), countermovement jump (CMJ), and 5-jump test (5-JT) performances were assessed. Kinematics analyses were made using a video camera during a 40-m sprint running test and the following running velocities were calculated: The first step after the start (V(first step)), the first 5 m (V(first 5 meters)), and between the 35 m and 40 m (V(max)). Back half squat exercises were performed to determine 1-repetition maximum (1-RM). Leg and thigh muscle volume and mean thigh cross-sectional area (CSA) were assessed by anthropometry. The resistance training group showed improvement in Wpeak (p < 0.05), jump performances (SJ, p < 0.05 and 5-JT, p < 0.001), 1-RM (p < 0.001) and all sprint running calculated velocities (p < 0.05 for both V(first step) and V(first 5 meters), p < 0.01 for V(max)). Both typical force-velocity relationships and mechanical parabolic curves between power and velocity increased after the strength training program. Leg and thigh muscle volume and CSA of RTG remained unchanged after strength training. Back half squat exercises, including adapted heavy loads and only 2 training sessions per week, improved athletic performance in junior soccer players. These specific dynamic constant external resistance exercises are highly recommended as part of an annual training program for junior soccer players.
The aims of the present study were both to describe anthropometrics and cycling power-velocity characteristics in top-level track sprinters, and to test the hypothesis that these variables would represent interesting predictors of the 200 m track sprint cycling performance. Twelve elite cyclists volunteered to perform a torque-velocity test on a calibrated cycle ergometer, after the measurement of their lean leg volume (LLV) and frontal surface area (A(p)), in order to draw torque- and power-velocity relationships, and to evaluate the maximal power (P(max)), and both the optimal pedalling rate (f(opt)) and torque (T(opt)) at which P (max) is reached. The 200 m performances--i.e. velocity (V200) and pedalling rate (f 200)--were measured during international events (REC) and in the 2002 French Track Cycling Championships (NAT). P(max), f(opt), and T(opt) were respectively 1600 +/- 116 W, 129.8 +/- 4.7 rpm and 118.5 +/- 9.8 N . m. P(max) was strongly correlated with T(opt) (p < 0.001), which was correlated with LLV (p < 0.01). V200 was related to P(max) normalized by A(p) (p < or = 0.05) and also to f(opt) (p < 0.01) for REC and NAT. f 200 (155.2 +/- 3, REC; 149 +/- 4.3, NAT) were significantly higher than f(opt) (p < 0.001). These findings demonstrated that, in this population of world-class track cyclists, the optimization of the ratio between P(max) and A(p) represents a key factor of 200 m performance. Concerning the major role also played by f(opt), it is assumed that, considering high values of f 200, sprinters with a high value of optimal pedalling rate (i.e. lower f200-f(opt) difference) could be theoretically in better conditions to maximize their power output during the race and hence performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.