With the advent of the 5G era,the development of massive data learning algorithms and in-depth research on neural networks, deep learning methods are widely used in image recognition tasks. However, there is currently a lack of methods for identifying and classifying efficiently Internet of Things (IoT) images. This paper develops an IoT image recognition system based on deep learning, i.e., uses convolutional neural networks (CNN) to construct image recognition algorithms, and uses principal component analysis (PCA) and linear discriminant analysis (LDA) to extract image features, respectively. The effectiveness of the two PCA and LDA image recognition methods is verified through experiments. And when the image feature dimension is 25, the best image recognition effect can be obtained. The main classifier used for image recognition in the IoT is the support vector machine (SVM), and the SVM and CNN are trained by using the database of this paper. At the same time, the effectiveness of the two for image recognition is checked, and then the trained classifier is used for image recognition. It is found that a CNN and SVM-based secondary classification IoT image recognition method improves the accuracy of image recognition. The secondary classification method combines the characteristics of the SVM and CNN image recognition methods, and the accuracy of the image recognition method is verified to provide an effective improvement through experimental verification.