2023
DOI: 10.3390/a16050218
|View full text |Cite
|
Sign up to set email alerts
|

Boosting the Learning for Ranking Patterns

Abstract: Pattern mining is a valuable tool for exploratory data analysis, but identifying relevant patterns for a specific user is challenging. Various interestingness measures have been developed to evaluate patterns, but they may not efficiently estimate user-specific functions. Learning user-specific functions by ranking patterns has been proposed, but this requires significant time and training samples. In this paper, we present a solution that formulates the problem of learning pattern ranking functions as a multi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 38 publications
0
0
0
Order By: Relevance