Many planning, scheduling or multi-dimensional packing problems involve the design of subtle logical combinations of temporal or spatial constraints. On the one hand, the precise modelling of these constraints, which are formulated in various relation algebras, entails a number of possible logical combinations and requires expertise in constraint-based modelling. On the other hand, active constraint acquisition (CA) has been used successfully to support non-experienced users in learning conjunctive constraint networks through the generation of a sequence of queries. In this paper, we propose GEACQ, which stands for Generic Qualitative Constraint Acquisition, an active CA method that learns qualitative constraints via the concept of qualitative queries. GEACQ combines qualitative queries with time-bounded path consistency (PC) and background knowledge propagation to acquire the qualitative constraints of any scheduling or packing problem. We prove soundness, completeness and termination of GEACQ by exploiting the jointly exhaustive and pairwise disjoint property of qualitative calculus and we give an experimental evaluation that shows (i) the efficiency of our approach in learning temporal constraints and, (ii) the use of GEACQ on real scheduling instances.
Discovering relevant patterns for a particular user remains a challenging tasks in data mining. Several approaches have been proposed to learn user-specific pattern ranking functions. These approaches generalize well, but at the expense of the running time. On the other hand, several measures are often used to evaluate the interestingness of patterns, with the hope to reveal a ranking that is as close as possible to the user-specific ranking. In this paper, we formulate the problem of learning pattern ranking functions as a multicriteria decision making problem. Our approach aggregates different interestingness measures into a single weighted linear ranking function, using an interactive learning procedure that operates in either passive or active modes. A fast learning step is used for eliciting the weights of all the measures by mean of pairwise comparisons. This approach is based on Analytic Hierarchy Process (AHP), and a set of user-ranked patterns to build a preference matrix, which compares the importance of measures according to the user-specific interestingness. A sensitivity based heuristic is proposed for the active learning mode, in order to insure high quality results with few user ranking queries. Experiments conducted on well-known datasets show that our approach significantly reduces the running time and returns precise pattern ranking, while being robust to user-error compared with state-of-the-art approaches.
Pattern mining is a valuable tool for exploratory data analysis, but identifying relevant patterns for a specific user is challenging. Various interestingness measures have been developed to evaluate patterns, but they may not efficiently estimate user-specific functions. Learning user-specific functions by ranking patterns has been proposed, but this requires significant time and training samples. In this paper, we present a solution that formulates the problem of learning pattern ranking functions as a multi-criteria decision-making problem. Our approach uses an analytic hierarchy process (AHP) to elicit weights for different interestingness measures based on user preference. We also propose an active learning mode with a sensitivity-based heuristic to minimize user ranking queries while still providing high-quality results. Experiments show that our approach significantly reduces running time and returns precise pattern ranking while being robust to user mistakes, compared to state-of-the-art approaches.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.