Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The success of modern transition-metal catalysis is largely due to the availability of a diverse range of ligand frameworks. One of the most universal aspects of ligand design is the strategic attachment of bulky substituents to influence the activity of catalysts. Sterically demanding substituents kinetically protect the active metal center and, at the same time, promote substrate exchange and low coordination, two processes necessary for turnover. Bulky ligand substituents also influence the selectivity of the metal center for product formation and substrate consumption. For these purposes, the most common groups appended to ancillary ligands are alkyl and aryl groups, such as adamantyl or 2,6-diisopropylphenyl. Far less common is the use of dicarba-closo-dodecaborane (C 2 B 10 ) clusters [1] as surrogates for alkyl or aryl groups. [2] The three-dimensional aromatic nature of these species and their icosahedral shape lend them properties akin to those of both alkyl and aryl groups. However, owing to the hydridic nature of the BÀH vertices, ligands bearing these substituents tend to undergo undesirable B À H activation reactions, such as cyclometalation. [3] It is this tendency for such intramolecular reactions to occur that has limited the synthetic utility of dicarba-closo-dodecaborane-bearing ligands in the area of catalysis.Interestingly, complexes that contain ligands functionalized with related carba-closo-dodecaborate anions (CB 11 À ) [4] directly bound to the coordinating atom through the carborane cage carbon atom have not been reported. [5] Although similar in size to their neutral "dicarba" cousins (C 2 B 10 ), isoelectronic (CB 11 À ) clusters have significantly different properties. The negative charge is delocalized over all of the 12 cage atoms, and as a result, the anion is very weakly coordinating. This weak coordination ability can be enhanced by the substitution of some or all of the B À H vertices for alkyl or halo groups. In the case of alkyl substitution, the cluster becomes more reactive towards substitution and oxidation. On the other hand, exhaustive halogenation of the boron vertices of the cluster introduces a blanket of electronwithdrawing substituents that enhances the inherent weak coordination ability of the anion and also confers upon these molecules exceptional inertness. It has been demonstrated that perhalogenated carborane counteranions are sufficiently unreactive that they can form isolable salts with potent oxidants, such as C 60 +[6] and CH 3 + . [7] Thus, these clusters can be far more inert than even simple hydrocarbons: CH 3 + abstracts hydrides from n-alkanes with loss of methane at room temperature. It is these properties that have generated increasing interest [8] in the use of perhalogenated carborane anions in silylium catalysis [8i,l] and related processes. [8f] The anion of choice for most applications is the HCB 11 Cl 11 À anion (1), since it is readily accessible [8g] and arguably the most inert carborane anion (Scheme 1).We are interested in using the HCB 1...
The success of modern transition-metal catalysis is largely due to the availability of a diverse range of ligand frameworks. One of the most universal aspects of ligand design is the strategic attachment of bulky substituents to influence the activity of catalysts. Sterically demanding substituents kinetically protect the active metal center and, at the same time, promote substrate exchange and low coordination, two processes necessary for turnover. Bulky ligand substituents also influence the selectivity of the metal center for product formation and substrate consumption. For these purposes, the most common groups appended to ancillary ligands are alkyl and aryl groups, such as adamantyl or 2,6-diisopropylphenyl. Far less common is the use of dicarba-closo-dodecaborane (C 2 B 10 ) clusters [1] as surrogates for alkyl or aryl groups. [2] The three-dimensional aromatic nature of these species and their icosahedral shape lend them properties akin to those of both alkyl and aryl groups. However, owing to the hydridic nature of the BÀH vertices, ligands bearing these substituents tend to undergo undesirable B À H activation reactions, such as cyclometalation. [3] It is this tendency for such intramolecular reactions to occur that has limited the synthetic utility of dicarba-closo-dodecaborane-bearing ligands in the area of catalysis.Interestingly, complexes that contain ligands functionalized with related carba-closo-dodecaborate anions (CB 11 À ) [4] directly bound to the coordinating atom through the carborane cage carbon atom have not been reported. [5] Although similar in size to their neutral "dicarba" cousins (C 2 B 10 ), isoelectronic (CB 11 À ) clusters have significantly different properties. The negative charge is delocalized over all of the 12 cage atoms, and as a result, the anion is very weakly coordinating. This weak coordination ability can be enhanced by the substitution of some or all of the B À H vertices for alkyl or halo groups. In the case of alkyl substitution, the cluster becomes more reactive towards substitution and oxidation. On the other hand, exhaustive halogenation of the boron vertices of the cluster introduces a blanket of electronwithdrawing substituents that enhances the inherent weak coordination ability of the anion and also confers upon these molecules exceptional inertness. It has been demonstrated that perhalogenated carborane counteranions are sufficiently unreactive that they can form isolable salts with potent oxidants, such as C 60 +[6] and CH 3 + . [7] Thus, these clusters can be far more inert than even simple hydrocarbons: CH 3 + abstracts hydrides from n-alkanes with loss of methane at room temperature. It is these properties that have generated increasing interest [8] in the use of perhalogenated carborane anions in silylium catalysis [8i,l] and related processes. [8f] The anion of choice for most applications is the HCB 11 Cl 11 À anion (1), since it is readily accessible [8g] and arguably the most inert carborane anion (Scheme 1).We are interested in using the HCB 1...
Der vorliegende Aufsatz gibt einen Überblick über die elektronische Struktur, die spektroskopischen Eigenschaften und die (katalytische) Reaktivität von Komplexen mit Stickstoffradikalliganden. Komplexe mit Aminyl‐ ([M(.NR2)]), Nitren/Imidyl‐ ([M(.NR)]) oder Nitridylradikalliganden ([M(.N)]) sind nachweisbare und manchmal auch isolierbare Spezies, die trotz ihres Radikalcharakters oft selektive Reaktionsmuster gegenüber einer Vielzahl organischer Substrate zeigen. Für Komplexe mit Stickstoffradikalliganden wird ein Klassifizierungssystem vorgestellt, das auf ihrer Elektronenstruktur basiert und sie als Einelektronen‐reduzierte Fischer‐Systeme, Einelektronen‐oxidierte Schrock‐Systeme oder Systeme mit (fast) kovalenter M‐N‐π‐Bindung beschreibt. Experimentelle, für die Bestimmung des Aufenthaltsortes des Radikals (d. h. Metall oder Ligand) relevante Ergebnisse werden diskutiert, und aktuelle Beispiele aus der Literatur belegen die Verwendung von Komplexen mit Stickstoffradikalliganden in den (katalytischen) Synthesen verschiedener organischer Stickstoffverbindungen wie Aziridine und Amine. Dieser Aufsatz soll dazu beitragen, die (katalytische) Reaktivität von Stickstoffradikalliganden und ihre Rolle bei der Feinabstimmung der Reaktivität von Koordinationsverbindungen besser zu verstehen.
Eine ganze Reihe erst kürzlich verwirklichter nukleophiler Borverbindungen wie Borylanionen oder Borylene brechen die üblichen mit dem Element Bor bzw. borhaltigen Verbindungen assoziierten Regeln und verhalten sich keineswegs wie Lewis‐Säuren bzw. Elektrophile. Auch das B‐H‐Bindungselektronenpaar in Boranen zeigt häufig einen nukleophilen Charakter, was im Allgemeinen auf die geringere Elektronegativität von Bor im Vergleich zu Wasserstoff zurückgeführt wird. Obwohl diese Eigenschaft bislang eher wenig Aufmerksamkeit erregt hat, ermöglichten erste Studien zur Nukleophilie der B‐H‐Bindungselektronen bereits die Entdeckung interessanter Strukturmotive mit B‐H‐B‐verbrückten Einheiten und B‐H⋅⋅⋅H‐Y‐Wasserstoffbrücken, auf deren Grundlage sich ein komplett eigenständiges Forschungsgebiet entwickelt hat. Hierzu zählen unter anderem 1) die Aufklärung der mechanistischen Details zur Bildung von Aminodiboran (ADB), des Diammoniakats von Diboran (DADB) sowie der Lithium‐ und Natriumsalze von Octahydrotriborat (B3H8−) und 2) die Entwicklung verbesserter experimenteller Zugänge zu diesen Reagenzien. Eine umfassende Auseinandersetzung mit den nukleophilen Eigenschaften des B‐H‐Bindungselektronenpaares hat zudem zu einem tieferen Verständnis der unterschiedlichen Mechanismen von Hydroborierungsreaktionen beigetragen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.