2017 International Carnahan Conference on Security Technology (ICCST) 2017
DOI: 10.1109/ccst.2017.8167804
|View full text |Cite
|
Sign up to set email alerts
|

BotViz: A memory forensic-based botnet detection and visualization approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 30 publications
0
1
0
Order By: Relevance
“…Monitoring activity from DNS-queries during C&C communication or updates and applying semi-supervised fuzzy c-means clustering to produce security scenarios is the basis of the self-adaptive system called BotGRABBER [161]. Not much different is the method proposed by Sharalfaldin et al in [168], where a novel botnet detection framework, BotViz, is presented. BotViz uses a combination of DNS-based analysis of host PC DNS records and API hook forensics on memory dumps to detect potentially vulnerable systems.…”
Section: Domain Name System (Dns) Based Detectionmentioning
confidence: 99%
“…Monitoring activity from DNS-queries during C&C communication or updates and applying semi-supervised fuzzy c-means clustering to produce security scenarios is the basis of the self-adaptive system called BotGRABBER [161]. Not much different is the method proposed by Sharalfaldin et al in [168], where a novel botnet detection framework, BotViz, is presented. BotViz uses a combination of DNS-based analysis of host PC DNS records and API hook forensics on memory dumps to detect potentially vulnerable systems.…”
Section: Domain Name System (Dns) Based Detectionmentioning
confidence: 99%